test
This commit is contained in:
parent
8f36b9b171
commit
f550779d48
1 changed files with 71 additions and 0 deletions
|
|
@ -0,0 +1,71 @@
|
||||||
|
|
||||||
|
# Error Analysis
|
||||||
|
|
||||||
|
In computational applications there are two main sources of error that we need to worry about:
|
||||||
|
|
||||||
|
1. roundoff (or rounding) errors
|
||||||
|
2. approximation errors
|
||||||
|
|
||||||
|
**Rounding errors** originate from the necessity of having to represent numbers in a computer using a finite number of digits. **Approximation errors**, instead, refer to those errors that are intrinsic of the way we numerically solve a specific problem. In particular, these would be present even in the ideal case where we were able to carry out the computation without rounding errors.
|
||||||
|
|
||||||
|
A simple example of approximation error can be seen in the case where we estimate the value of the function
|
||||||
|
|
||||||
|
$$
|
||||||
|
e^x = \sum_{n=0}^{\infty} {x^n\over n!} = 1 + x + {x^2\over 2} + {x^3\over 3!} + \ldots
|
||||||
|
\
|
||||||
|
\approx
|
||||||
|
\
|
||||||
|
\sum_{n=0}^{n_{\rm max}} {x^n\over n!}\,,
|
||||||
|
$$
|
||||||
|
|
||||||
|
by evaluating the series only up to a finite order $n_{\rm max}<\infty$. In this case, the approximation comes with a *truncation error* of ${\rm O}(x^{n_{\rm max}+1})$.
|
||||||
|
|
||||||
|
:::i "Info"
|
||||||
|
aasdasdasd
|
||||||
|
:::
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Let $f(x)$ and $g(x)$ be two functions defined on some unbounded subset $D$ of the positive real numbers, and $g(x)$ be non-zero in a neighborhood of $a\in D$ (often $a=0$). We write
|
||||||
|
$$
|
||||||
|
f(x)={\rm O}(g(x))
|
||||||
|
\quad
|
||||||
|
\text{as}
|
||||||
|
\quad
|
||||||
|
x\to a
|
||||||
|
$$
|
||||||
|
|
||||||
|
> if there exist positive numbers $\delta$ and $M$ such that for all $x$ with $0 < |x-a| < \delta$,
|
||||||
|
|
||||||
|
$$
|
||||||
|
|f(x)| \leq M |g(x)|\,.
|
||||||
|
$$
|
||||||
|
|
||||||
|
> Equivalently, we may say that $f(x)={\rm O}(g(x))$ if
|
||||||
|
|
||||||
|
$$
|
||||||
|
\underset{x\to a}{\lim \sup}{|f(x)|\over |g(x)|}<\infty\,.
|
||||||
|
$$
|
||||||
|
|
||||||
|
> If, instead, it holds that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\underset{x\to a}{\lim}{f(x)\over g(x)}=1\,,
|
||||||
|
$$
|
||||||
|
|
||||||
|
>we write $f(x) \sim g(x)$ as $x\to a$.
|
||||||
|
|
||||||
|
|
||||||
|
In this chapter, we present a general discussion on *roundoff errors*, not tied to a specific numerical problem we want to solve. In later chapters, we discuss several different methods to solve specific problems and study their approximation errors in detail.
|
||||||
|
|
||||||
|
|
||||||
|
<font size= "6"> Exercises </font>
|
||||||
|
|
||||||
|
1. Consider the function $f(x)=e^x$ in the interval $x\in [0,1]$. Write a program that calculates the corresponding approximating series:
|
||||||
|
|
||||||
|
$$
|
||||||
|
g_N(x)=\sum_{n=0}^N {x^n\over n!}\,.
|
||||||
|
$$
|
||||||
|
|
||||||
|
**(a)** Verify that the absolute error $\Delta=|f(x)-g_N(x)|$ scales approximately with $x^{N+1}/(N+1)!$ for $N=1,2,3,4$.
|
||||||
|
|
||||||
|
**(b)** The error $\Delta$, in the given interval in $x$, differs from $x^{N+1}/(N+1)!$ . Why is that and for which values of $x$?
|
||||||
Loading…
Add table
Add a link
Reference in a new issue